CHRISTIAN EMINENT COLLEGE, INDORE

(Academy of Management, Professional Education and Research)

An Autonomous Institution Accredited with 'A' Grade by NAAC

E-Content On "Lattice"

Prepared By: Dr. Manjeet Singh Teeth

Department of Mathematics & Statistics

Lattice

• A Lattice is a partially ordered set where every pair of elements has both supremum and infimum.

Definition of lattice:

 A Lattice is a partially ordered set (L,≤) in which every subset consisting of two elements has a least upper bound and a greatest lower bound.

• We denote LUB {a,b} by a'b and call it join or sum of a and b.

• Similarly we denote GLB {a,b} by a^b and call it meet or product of a and b.Lattice is a mathematical structure with two binary operations meet and join.

Examples of Lattice

- Let A be nonempty set P(A) be its power set , The partially order set $(P(A), \subseteq)$
- Is a lattice in which meet and join are the same as the operations
 ∪ and ∩ respectively.
- If A has a single element say a then

$$P(A) = \{ \emptyset, \{a\} \}$$
and LUB $\{ \emptyset, \{a\} \} = \{a\}, GUB \{ \emptyset, \{a\} \} = \emptyset$

Examples of Lattice

• If A has two element say a and b

$$P(A) = \{\emptyset, \{a\}, \{b\}, \{a,b\}\}$$

Hasse Diagram

• Hasse diagram for single element $\{a\}$

Hasse diagram for two elements

$$\{a,b\}$$
 $\{a\}$

Properties of Lattices

Let (L, \leq) be a lattice and let a, b, $c \in L$. Then, from the definition of V (join) and A (meet) we have

(i) $a \le a \lor b$ and $b \le a \lor b$; $a \lor b$ is an upper bound of a and b.

(ii) if $a \le c$ and $b \le c$, then $a \lor b \le c$; $a \lor b$ is the least upper bound of a and b.

(iii) $a \land b \le a$ and $a \land b \le b$; $a \land b$ is a lower bound of a and b.

(iv)If $c \le a$ and $c \le b$, then $c \le a \land b$; $a \land b$ is the greatest lower bound of a and b.

Lattices as Algebraic System

Definition. A **Lattice** is an algebraic system (L, \vee, A) with two binary operations \vee and A, called **join** and **meet** respectively, on a non-empty set L which satisfy the following axioms for $a, b, c \in L$:

$$a \lor b = b \lor a$$

 $a \land b = b \land a$

$$a \wedge (b \wedge c) = (a \wedge b) \wedge c$$

 $a \vee (b \vee c) = (a \vee b) \vee c$

Lattices as Algebraic System

 L_3 : Absorption property

$$a \wedge (b \vee c) = a$$

$$a \lor (b \land c) = a$$

 L_4 : Idempotent property

$$a \lor a = a$$

$$a \wedge a = a$$