CHRISTIAN EMINENT COLLEGE, INDORE

(Academy of Management, Professional Education and Research) An Autonomous Institution Accredited with 'A' Grade by NAAC

E-Content On "Lattice"

Prepared By: Dr. Manjeet Singh Teeth

Department of Mathematics \mathcal{L} Statistics

Lattice

- A Lattice is a partially ordered set where every pair of elements has both supremum and infimum.

Definition of lattice :

- A Lattice is a partially ordered set (L, \leq) in which every subset consisting of two elements has a least upper bound and a greatest lower bound.
- We denote LUB $\{a, b\}$ by $a^{\vee} b$ and call it join or sum of a and b.
- Similarly we denote GLB $\{\mathrm{a}, \mathrm{b}\}$ by $\mathrm{a}^{\wedge} \mathrm{b}$ and call it meet or product of a and b.Lattice is a mathematical structure with two binary operations meet and join.

Examples of Lattice

- Let A be nonempty set $P(A)$ be its power set, The partially order set $(P(A), \subseteq)$
- Is a lattice in which meet and join are the same as the operations \cup and \cap respectively.
- If A has a single element say a then

$$
\begin{aligned}
& P(A)=\{\varnothing,\{a\}\} \\
& \text { and } L U B\{\varnothing,\{a\}\}=\{a\}, G U B\{\varnothing,\{a\}\}=\varnothing
\end{aligned}
$$

Examples of Lattice

- If A has two element say a and b

$$
P(A)=\{0,\{a,\{(b),\{a, b)\}
$$

Hasse Diagram

- Hasse diagram for single element $\{a\}$
- Hasse diagram for two elements

$$
\{a, b\}
$$

Properties of Lattices

Let (L, \leq) be a lattice and let $a, b, c \in L$. Then, from the definition of \vee (join) and A (meet) we have
(i) $a \leq a \vee b$ and $b \leq a \vee b ; a \vee b$ is an upper bound of a and b.
(ii) if $a \leq c$ and $b \leq c$, then $a \vee b \leq c$; $a \vee b$ is the least upper bound of a and b.
(iii) $a \mathrm{~A} b \leq a$ and $a \mathrm{~A} b \leq b ; a \mathrm{~A} b$ is a lower bound of a and b.
(iv)If $c \leq a$ and $c \leq b$, then $c \leq a \mathrm{~A} b ; a \mathrm{~A} b$ is the greatest lower bound of a and b.

Lattices as Algebraic System

Definition. A Lattice is an algebraic system ($L, \mathrm{~V}, \mathrm{~A}$) with two binary operations V and A, called join and meet respectively, on a non-empty set L which satisfy the following axioms for $a, b, c \in L$:
L_{1} : Commutative property
$a \vee b=b \vee a$

$$
a \wedge b=b \wedge a
$$

L_{2} : Associative property

$$
a \wedge(b \wedge c)=(a \wedge b) \wedge c
$$

$$
a \vee(b \vee c)=(a \vee b) \vee c
$$

Lattices as Algebraic System

L_{3} : Absorption property

$$
\begin{aligned}
& a \wedge(b \vee c)=a \\
& a \vee(b \wedge c)=a
\end{aligned}
$$

L_{4} : Idempotent property

$$
\begin{aligned}
& a \vee a=a \\
& a \wedge a=a
\end{aligned}
$$

