Definition of Semigroup :

Let S be a nonempty set and o be a binary operation on S. The algebraic system (s, o) is called a semigroup if the operation is associative.

In other words, (s, o) is a semigroup if for any $x, y, z \in S$

$$(x \circ y) \circ z = x \circ (y \circ z)$$

Definition of Monoid :

Let M be a nonempty set and o be a binary operation on M. The algebraic system (M, o) is called a monoid if for any $x, y, z \in M$

$$(x \circ y) \circ z = x \circ (y \circ z)$$

And there exists an element $e \in M$ such that for any $x \in M$

$$e \ o \ x = x \ o \ e = x.$$

Example:

1. (N,+) is a semigroup, where N be the set of natural numbers.

2. (N,\times) is a semigroup, where N be the set of natural numbers.

3. (N,-) is not a semigroup, where Z be the set of integers numbers.

3. Let S be a nonempty set and $\rho(S)$ be its power set .The algebra $(\rho(S), \frown)$ is a semigroup.

4. Let S be a nonempty set and $\rho(S)$ be its power set .The algebra $(\rho(S), \cup)$ is a semigroup.

5. (N,+) is a monoid with identities element 0, where N be the set of natural numbers.

6. (N,\times) is a semigroup with identities element 1, where N be the set of natural numbers.

7. Let S be a nonempty set and $\rho(S)$ be its power set .The algebra $(\rho(S), \cap)$ is a monoid with identity element S.

8. Let S be a nonempty set and $\rho(S)$ be its power set .The algebra $(\rho(S), \cup)$ is a monoid with identity element ϕ .

Homomorphism of Semigroup:

Let (s,*) and (T,Δ) be any two semigroups. A mapping $g: S \to T$ such that for any two elements $a, b \in S$, $g(a*b) = g(a) \Delta g(b)$ is called a semigroup homomorphism. Example:

Let Z be the set of integers and E be the set of all even integers. (Z,+) and (T,+) are semigroups. Mapping $f: Z \to T$ defined by $f(a) = 2a, a \in Z$ is a semigroup homomorphism because f(a+b) = 2(a+b) = 2a + 2b = f(a) + f(b).

Homomorphism of Monoid:

Let $(s, *, e_M)$ and (T, Δ, e_T) be any two monoids. A mapping $g: M \to T$ such that for any two elements

 $a, b \in M$, $g(a * b) = g(a) \Delta g(b)$ and $g(e_M) = e_T$ is called a monoid homomorphism.

Example:

Let Z be the set of integers and E be the set of all even integers. (Z,+) and (T,+) are monoids. Mapping $f: Z \to T$ defined by $f(a) = 2a, a \in Z$ is a monoid homomorphism because

$$f(a+b) = 2(a+b) = 2a + 2b = f(a) + f(b)$$