CHRISTIAN EMINENT COLLEGE, INDORE

(Academy of Management, Professional Education and Research)
An Autonomous Institution Accredited with 'A' Grade by NAAC

E-Content
 On $"$ Vectors $2 "$

Prepared By: Prof. Rakesh K Jaiswal

Department of Mathematics \mathcal{L} Statistics

Mathematics

Prof. Rakesh K. Jaiswal

Session

Vectors -2

Session Objectives

> Vector (or Cross) Product
$>$ Geometrical Representation
$>$ Properties of Vector Product
$>$ Vector Product in Terms of Components
> Applications: Vector Moment of a Force about a Point, about a Line
> Class Exercise

Vector (or Cross) Product

Let \vec{a}, \vec{b} be two non-zero non- parallel vectors. Then, $\vec{a} \times \vec{b}=|\vec{a}||\vec{b}| \sin \theta \hat{n}$, where θ is the angle between \vec{a} and \vec{b} and \hat{n} is a unit vector perpendicular to the plane of \vec{a} and \vec{b} such that $\vec{a}, \vec{b}, \hat{n}$ form a right handed system.

Note

1. If one of \vec{a} or \vec{b} or both is $\overrightarrow{0}$, then θ is not defined as $\overrightarrow{0}$ has no direction and \hat{n} is not defined. In this case $\vec{a} \times \vec{b}=0$.
2. If \vec{a} and \vec{b} are collinear i.e. if $\theta=0$ or π, then $\vec{a} \times \vec{b}=0$.

Geometrical Representation

Area of parallelogram OANB
$=O A . B M=O A . O B \sin \theta$
$=|\overrightarrow{\mathrm{OA}}| \cdot|\overrightarrow{\mathrm{OB}}| \sin \theta$
$=|\vec{a}||\vec{b}| \sin \theta$
$=|\vec{a} \times \vec{b}|$

Also, area of $\triangle \mathrm{OAB}=\frac{1}{2}$ area of parallelogram OANB $=\frac{1}{2}|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|$

Properties of Vector Product

1. Vector product is not commutative
i.e. $\vec{a} \times \vec{b} \neq \vec{b} \times \vec{a}$

In fact $\vec{a} \times \vec{b}=-\vec{b} \times \vec{a}$
2. Vector product is distributive over vector addition
$\vec{a} \times(\vec{b}+\vec{c})=\vec{a} \times \vec{b}+\vec{a} \times \vec{c} \quad$ [Left distributive law]
$(\vec{b}+\vec{c}) \times \vec{a}=\vec{b} \times \vec{a}+\vec{c} \times \vec{a} \quad$ [Right distributive law]

Properties of Vector Product
 Cont.

3. Vector product of orthogonal traid of unit vectors $\hat{i}, \hat{\mathrm{j}}, \hat{\mathrm{k}}$

Properties of Vector Product Cont.

$\hat{i} \times \hat{i}=|\hat{i}||\hat{i}| \sin 0^{\circ} \hat{n}=\overrightarrow{0}$
Similarly, $\hat{\mathbf{j}} \times \hat{\mathrm{j}}=\hat{\mathrm{k}} \times \hat{\mathrm{k}}=\overrightarrow{0}$

$$
\begin{aligned}
& \hat{i} \times \hat{j}=\hat{k}, \hat{j} \times \hat{k}=\hat{i}, \hat{k} \times \hat{i}=\hat{j} \\
& \hat{j} \times \hat{i}=-\hat{k}, \hat{k} \times \hat{j}=-\hat{i}, \hat{i} \times \hat{k}=-\hat{j}
\end{aligned}
$$

4. If \vec{a} and \vec{b} are two vectors and m is real number, then $(m \vec{a}) \times \vec{b}=m(\vec{a} \times \vec{b})=\vec{a} \times(m \vec{b})$

Vector Product in Terms of Components

Let $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}$ and $\vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}$, then

$$
\begin{aligned}
& \vec{a} \times \vec{b}=\left(a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}\right) \times\left(b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}\right) \\
& =\left(a_{2} b_{3}-a_{3} b_{2}\right) \hat{i}-\left(a_{1} b_{3}-a_{3} b_{1}\right) \hat{j}+\left(a_{1} b_{2}-a_{2} b_{1}\right) \hat{k}
\end{aligned}
$$

$$
=\left|\begin{array}{lll}
\hat{i} & \hat{j} & \hat{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|
$$

Vectors Normal to the Plane of Two Given Vectors

$$
\vec{a} \times \vec{b}=|\vec{a}||\vec{b}| \sin \theta \hat{n} \Rightarrow \hat{n}=\frac{\vec{a} \times \vec{b}}{|\vec{a}||\vec{b}| \sin \theta}
$$

$\Rightarrow \hat{n}=\frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|}$ is a unit vector perpendicular to the plane of \vec{a} and \vec{b}
$-\frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|}$ is a unit vector perpendicular to the plane of \vec{a} and \vec{b}
Vector of magnitude ' λ ' normal to the plane of \vec{a} and $\overrightarrow{\mathrm{b}}$ is given by
$\pm \frac{\lambda(\vec{a} \times \vec{b})}{|\vec{a} \times \vec{b}|}$

Lagrange's Identity

If \vec{a} and \vec{b} are any two vectors, then
$|\vec{a} \times \vec{b}|^{2}=|\vec{a}|^{2}|\vec{b}|^{2}-(\vec{a} \cdot \vec{b})^{2}$ or $|\vec{a} \times \vec{b}|^{2}+(\vec{a} \cdot \vec{b})^{2}=|\vec{a}|^{2}|\vec{b}|^{2}$

Example -1

Find a unit vector perpendicular to the plane containing the vectors $\vec{a}=2 \hat{i}+\hat{j}+\hat{k}$ and $\vec{b}=\hat{i}+2 \hat{j}+\hat{k}$.

Solution: We have $\vec{a}=2 \hat{i}+\hat{j}+\hat{k}$ and $\vec{b}=\hat{i}+2 \hat{j}+\hat{k}$.

$$
\begin{aligned}
\therefore \vec{a} \times \vec{b}=\left|\begin{array}{lll}
\hat{i} & \hat{j} & \hat{k} \\
2 & 1 & 1 \\
1 & 2 & 1
\end{array}\right| & =(1-2) \hat{i}-(2-1) \hat{j}+(4-1) \hat{k} \\
& =-\hat{i}-\hat{j}+3 \hat{k}
\end{aligned}
$$

Solution Cont.

\therefore A unit vector perpedicular to the plane containing \vec{a} and \vec{b} is given by

$$
\begin{aligned}
\hat{n}= \pm \frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|} & = \pm \frac{-\hat{i}-\hat{j}+3 \hat{k}}{\sqrt{(-1)^{2}+(-1)^{2}+(3)^{2}}} \\
& = \pm \frac{-\hat{i}-\hat{j}+3 \hat{k}}{\sqrt{11}}
\end{aligned}
$$

Example -2

If $\vec{a}, \vec{b}, \vec{c}$ are the position vectors of the non-collinear points A, B, C respectively in space, show that $\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}$ is perpendicular to the plane $A B C$.

Solution: The vector perpendicular to the plane $A B C$ is $\overrightarrow{A B} \times \overrightarrow{A C}$.

$$
\begin{aligned}
& \overrightarrow{A B}=\vec{b}-\vec{a} \text { and } \overrightarrow{A C}=\vec{c}-\vec{a} \\
& \overrightarrow{A B} \times \overrightarrow{A C}=(\vec{b}-\vec{a}) \times(\vec{c}-\vec{a}) \\
& =\vec{b} \times \vec{c}-\vec{b} \times \vec{a}-\vec{a} \times \vec{c}+\vec{a} \times \vec{a} \\
& =\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}
\end{aligned}
$$

Example -3

If $|\vec{a}|=\sqrt{26},|\vec{b}|=7$ and $|\vec{a} \times \vec{b}|=35$, then find $\vec{a} \cdot \vec{b}$.
(CBSE 2002)

Solution: We have $|\vec{a} \times \vec{b}|^{2}+(\vec{a} \cdot \vec{b})^{2}$

$$
\begin{aligned}
& \quad=|\vec{a}|^{2}|\vec{b}|^{2} \sin ^{2} \theta+|\vec{a}|^{2}|\vec{b}|^{2} \cos ^{2} \theta \\
& \Rightarrow|\vec{a} \times \vec{b}|^{2}+(\vec{a} \cdot \vec{b})^{2}=|\vec{a}|^{2}|\vec{b}|^{2} \\
& \Rightarrow 35^{2}+(\vec{a} \cdot \vec{b})^{2}=26 \times 7^{2}
\end{aligned}
$$

Solution Cont.

$$
\Rightarrow(\vec{a} \cdot \vec{b})^{2}=26 \times 7^{2}-35^{2}=49
$$

$\Rightarrow \vec{a} \cdot \vec{b}=7$

Example -4

If $\vec{a}=\hat{i}-2 \hat{j}+3 \hat{k}$ and $\vec{b}=2 \hat{i}+3 \hat{j}-5 \hat{k}$, then find $\vec{a} \times \vec{b}$.
Verify that \vec{a} and $\vec{a} \times \vec{b}$ are perpendicular to each other.
Solution: We have $\vec{a}=\hat{i}-2 \hat{j}+3 \hat{k}$ and $\vec{b}=2 \hat{i}+3 \hat{j}-5 \hat{k}$

$$
\begin{aligned}
& \therefore \vec{a} \times \vec{b}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
1 & -2 & 3 \\
2 & 3 & -5
\end{array}\right| \\
& =(10-9) \hat{i}-(-5-6) \hat{j}+(3+4) \hat{k} \\
& =\hat{i}+11 \hat{j}+7 \hat{k}
\end{aligned}
$$

Solution Cont.

\vec{a} and $(\vec{a} \times \vec{b})$ are perpendicular to each other if

$$
\vec{a} \cdot(\vec{a} \times \vec{b})=0
$$

$\vec{a} \cdot(\vec{a} \times \vec{b})=(\hat{i}-2 \hat{j}+3 \hat{k}) \cdot(\hat{i}+11 \hat{j}+7 \hat{k})$

$$
=1-22+21=0
$$

Example -5

If $\vec{a}, \vec{b}, \vec{c}$ are vectors such that $\vec{a} \cdot \vec{b}=\vec{a} \cdot \vec{c}$, $\vec{a} \times \vec{b}=\vec{a} \times \vec{c}, \vec{a} \neq \overrightarrow{0}$, then show that $\vec{b}=\vec{c}$.

Solution: $\vec{a} \cdot \vec{b}=\vec{a} \cdot \vec{c}$ and $\vec{a} \neq \overrightarrow{0}$

$$
\begin{align*}
& \Rightarrow \vec{a} \cdot \vec{b}-\vec{a} \cdot \vec{c}=0 \text { and } \vec{a} \neq \overrightarrow{0} \\
& \Rightarrow \vec{a} \cdot(\vec{b}-\vec{c})=0 \text { and } \vec{a} \neq \overrightarrow{0} \\
& \Rightarrow(\vec{b}-\vec{c})=0 \text { or } \vec{a} \perp(\vec{b}-\vec{c}) \\
& \Rightarrow \vec{b}=\vec{c} \text { or } \vec{a} \perp(\vec{b}-\vec{c}) \tag{i}
\end{align*}
$$

Solution Cont.

$$
\begin{gather*}
\vec{a} \times \vec{b}=\vec{a} \times \vec{c} \text { and } \vec{a} \neq \overrightarrow{0} \\
\Rightarrow \vec{a} \times \vec{b}-\vec{a} \times \vec{c}=0 \text { and } \vec{a} \neq \overrightarrow{0} \\
\Rightarrow \vec{a} \times(\vec{b}-\vec{c})=0 \text { and } \vec{a} \neq \overrightarrow{0} \\
\Rightarrow(\vec{b}-\vec{c})=0 \text { or } \vec{a} \|(\vec{b}-\vec{c}) \\
\Rightarrow \vec{b}=\vec{c} \text { or } \vec{a} \|(\vec{b}-\vec{c}) \tag{ii}
\end{gather*}
$$

From (i) and (ii), $\vec{b}=\vec{c}$

Applications

1. Area of parallelogram with adjacent sides \vec{a} and $\vec{b}=|\vec{a} \times \vec{b}|$
2. Area of triangle with adjacent sides \vec{a} and $\vec{b}=\frac{1}{2}|\vec{a} \times \vec{b}|$
3. Area of parallelogram with diagonals $\overrightarrow{d_{1}}$ and $\overrightarrow{d_{2}}=\frac{1}{2}\left|\overrightarrow{d_{1}} \times \overrightarrow{d_{2}}\right|$

Example -6

Find the area of a parallelogram determined by the vectors $\hat{i}+\hat{j}+\hat{k}$ and $3 \hat{i}-2 \hat{j}+\hat{k}$.

Solution: Let $\vec{a}=\hat{i}+\hat{j}+\hat{k}$ and $\vec{b}=3 \hat{i}-2 \hat{j}+\hat{k}$, where \vec{a} and \vec{b} are adjacent sides of the parallelogram.

$$
\begin{aligned}
\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
1 & 1 & 1 \\
3 & -2 & 1
\end{array}\right| & =(1+2) \hat{i}-(1-3) \hat{j}+(-2-3) \hat{k} \\
& =3 \hat{i}+2 \hat{j}-5 \hat{k}
\end{aligned}
$$

Solution Cont.

Area of parallelogram $=|\vec{a} \times \vec{b}|$
$=\sqrt{3^{2}+2^{2}+(-5)^{2}}=\sqrt{38}$ sq. units.

Example -7

Find the area of the triangle formed by the points $A(1,1,2), B(2,3,5)$ and $C(1,5,5)$.

Solution: $\overrightarrow{\mathrm{AB}}=(2 \hat{i}+3 \hat{j}+5 \hat{k})-(\hat{i}+\hat{j}+2 \hat{k})=\hat{i}+2 \hat{j}+3 \hat{k}$
$\overrightarrow{A C}=(\hat{i}+5 \hat{j}+5 \hat{k})-(\hat{i}+\hat{j}+2 \hat{k})=0 \hat{i}+4 \hat{j}+3 \hat{k}$
$\overrightarrow{A B} \times \overrightarrow{A C}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 3 \\ 0 & 4 & 3\end{array}\right|=(6-12) \hat{i}-(3-0) \hat{j}+(4-0) \hat{k}$

$$
=-6 \hat{i}-3 \hat{j}+4 \hat{k}
$$

Solution Cont.

$$
\begin{aligned}
\therefore \text { Area of } \triangle \mathrm{ABC} & =\frac{1}{2}|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}| \\
& =\frac{1}{2} \sqrt{(-6)^{2}+(-3)^{2}+(4)^{2}} \\
& =\frac{\sqrt{61}}{2} \text { sq. units }
\end{aligned}
$$

Moment of Force About a Point

Let \vec{r} be the position vector of P relative to O. Then the moment (or torque) of \vec{F} about the point O is
$\vec{M}=\vec{r} \times \vec{F}$

Example -8

Find the moment of a force represented by $\hat{i}+\hat{j}+\hat{k}$ acting through the point B with position vector $-2 \hat{i}+3 \hat{j}+\hat{k}$, about the point A with position vector $\hat{i}+2 \hat{j}+3 \hat{k}$.

Solution: We have $\vec{F}=\hat{i}+\hat{j}+\hat{k}$

$$
\vec{r}=\overrightarrow{A B}=(-2 \hat{i}+3 \hat{j}+\hat{k})-(\hat{i}+2 \hat{j}+3 \hat{k})=-3 \hat{i}+\hat{j}-2 \hat{k}
$$

Solution Cont.

The moment of the force \vec{F} acting through B about the point A is given by

$$
\begin{aligned}
\vec{r} \times \vec{F} & =\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
-3 & 1 & -2 \\
1 & 1 & 1
\end{array}\right| \\
& =(1+2) \hat{i}-(-3+2) \hat{j}+(-3-1) \hat{k} \\
& =3 \hat{i}+\hat{j}-4 \hat{k}
\end{aligned}
$$

Moment of Force About a Line

The moment of \vec{F} about a line L is
$(\vec{r} \times \vec{F}) \cdot \hat{a}$
where â is a unit vector in the direction of the line L, and $\overrightarrow{\mathrm{OP}}=\vec{r}$ where O is any point on the line.

Example -9

Let $\vec{F}=2 \hat{i}-4 \hat{j}-3 \hat{k}$ acts at the point P with position vector $\hat{i}-2 \hat{j}+3 \hat{k}$.
Find the moment of \vec{F} about the line through the origin O in the direction of the vector $\vec{a}=\hat{i}+\hat{j}+\hat{k}$.

Solution: $\overrightarrow{O P} \times \vec{F}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 1 & -2 & 3 \\ 2 & -4 & -3\end{array}\right|$

$$
\begin{aligned}
& =(6+12) \hat{i}-(-3-6) \hat{j}+(-4+4) \hat{k} \\
& =18 \hat{i}+9 \hat{j}
\end{aligned}
$$

Solution Cont.

The moment of the force \vec{F} about the given line is
$(\overrightarrow{\mathrm{OP}} \times \overrightarrow{\mathrm{F}}) \cdot\left(\frac{\overrightarrow{\mathrm{a}}}{|\overrightarrow{\mathrm{a}}|}\right)=(18 \hat{i}+9 \hat{j}) \cdot\left(\frac{\hat{\mathrm{i}}+\hat{j}+\hat{k}}{\sqrt{3}}\right)=\frac{18+9}{\sqrt{3}}=9 \sqrt{3}$

Geometrical Problem Example-10

In a triangle $A B C$, prove by vector method that:
$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$

Solution:
By triangle law of vector addition
$\overrightarrow{B C}+\overrightarrow{C A}=\overrightarrow{B A}$
$\Rightarrow \vec{a}+\vec{b}=-\vec{c}$

$\Rightarrow \vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$

Solution Cont.

$$
\Rightarrow \vec{a} \times(\vec{a}+\vec{b}+\vec{c})=\vec{a} \times \overrightarrow{0}
$$

$\Rightarrow \vec{a} \times \vec{a}+\vec{a} \times \vec{b}+\vec{a} \times \vec{c}=\overrightarrow{0} \Rightarrow \vec{a} \times \vec{b}=-\vec{a} \times \vec{c}$

$$
\begin{equation*}
\Rightarrow \vec{a} \times \vec{b}=\vec{c} \times \vec{a} \tag{i}
\end{equation*}
$$

$\vec{b} \times(\vec{a}+\vec{b}+\vec{c})=\vec{b} \times \overrightarrow{0}$
$\Rightarrow \vec{b} \times \vec{a}+\vec{b} \times \vec{b}+\vec{b} \times \vec{c}=\overrightarrow{0} \Rightarrow \vec{b} \times \vec{c}=-\vec{b} \times \vec{a}$
$\Rightarrow \vec{b} \times \vec{c}=\vec{a} \times \vec{b}$

Solution Cont.

From (i) and (ii), we get
$\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}=\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{a}}$
$\Rightarrow|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|=|\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}|=|\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{a}}|$
$\Rightarrow a b \sin \left(180^{\circ}-C\right)=b c s i n\left(180^{\circ}-A\right)=a c s i n\left(180^{\circ}-B\right)$
$\Rightarrow \mathrm{ab} \sin \mathrm{C}=\mathrm{bcsin} \mathrm{A}=\mathrm{acsin} \mathrm{B}$
$\Rightarrow \frac{\sin C}{c}=\frac{\sin A}{a}=\frac{\sin B}{b}$
$\Rightarrow \frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$

Thank you

