CHRISTIAN EMINENT COLLEGE, INDORE

B.SC.-I Year (Mathematics)
 CONE

Prof. Sumit Sharma

CONE

Definition- A Cone is a surface generated by a moving straight line which passes through a fixed point and intersect a given curve or a touches a given surface.

Vertex

Guiding Curve

Theorem: General equation of the cone with vertex at origin is homogenous of second degree of the type $a x^{2}+b y^{2}+c z^{2}+$ $2 h x y+2 g z x+2 f y z=0$. D. R's must satisfy eqn. of cone.

Proof: Given generator is If $\frac{x}{l}=\frac{y}{m}=\frac{z}{n}=\mathrm{r}$
\therefore any point on the generator is ($\mathrm{Ir}, \mathrm{mr}, \mathrm{nr}$), which lies on the cone

$$
a x^{2}+b y^{2}+c z^{2}+2 h x y+2 g z x+2 f y z=0-(1)
$$

\Rightarrow This point (Ir, $m r, n r$) must satisfy (1)
\therefore we havea $(I r)^{2}+b(m r)^{2}+c(n r)^{2}+2 h(m r)(n r)+2 g(n r)(m r)+$ $2 f(m r)(I r)=0$
i.e

$$
\begin{gathered}
r^{2}\left(a(I)^{2}+b(m)^{2}+c(n)^{2}+2 h l m+2 g \ln +2 f m n\right)=0 \quad \text { Butr }^{2} \neq 0, \\
\therefore a l^{2}+b m^{2}+c^{2}+2 h l m+2 g l n+2 f m n=0
\end{gathered}
$$

i.e
D.R's satisfy the eqn. of cone.

General equation of the cone with vertex at origin and passing through coordinate axis is $\boldsymbol{h x y}+\boldsymbol{g z x}+f y z=0$.

Proof: Let General equation of the cone with vertex at origin be $a x^{2}+$ $b y^{2}+c z^{2}+2 h x y+2 g z x+2 f y z=0 .--(1)$

If (1) passes through coordinate axis (they areas generators) then D.R.'s of x-axis, y-axis and z-axis must satisfy eqn. (1) by cor.(1)

But D.R's of x-axis are $1,0,0$, they satisfy eqn. (1) $\Rightarrow>a(1)^{1}+0+0+$ $0+0+0=0, \Rightarrow a=0$
Similarly D.R's of y-axis are $0,1,0$ and z-axis $0,0,1$ must satisfy (1)
$\Rightarrow b=0$ and $c=0$
\therefore eqn. (1) becomes $0+0+0+2 h x y+2 g z x+2 f y z=0$.
i.e $h x y+g z x+f y z=0$

Thus equation of the cone with vertex at origin and passing through coordinate axis
$h x y+g z x+f y z=0$.
Examples:

Prove that the line $\frac{x}{l}=\frac{y}{m}=\frac{z}{n}$, where $l^{2}+2 m^{2}-3 n^{2}=0$ is a generator for the cone $x^{2}+2 y^{2}-3 z^{2}=0$
Proof: We know that if $\frac{x}{l}=\frac{y}{m}=\frac{z}{n}$ is a generator for the cone $\mathrm{x}^{2}+$ $2 y^{2}-3 z^{2}=0$ then by cor. (1),
D. $R^{\prime} s l, m, n$ of the generator must satisfy the eqn of cone. \therefore we have $\mathrm{l}^{2}+2 \mathrm{~m}^{2}-3 \mathrm{n}^{2}=0$ which is true.

Find eqn. of cone generated by the line through ($1,2,3$) whose D.C.'s satisfy the eqn. $21^{2}+3 m^{2}-4 n^{2}=0$ Soln.: Eqn of generator passing through the point $(1,2,3)$ with D.C's I, m, n is

$$
\frac{x-1}{l}=\frac{y-2}{m}=\frac{z-3}{n}=\mathbf{r} \text { (say) }
$$

$\Rightarrow \mathrm{I}=\frac{x-1}{r}, \mathrm{~m}=\frac{y-2}{r}, \mathrm{n}=\frac{z-3}{r}$
By cor. (1) we know that D. C's of generator satisfy the eqn. of cone and that eqn. is given by $\left.2\right|^{2}+3 m^{2}-4 n^{2}=0 \cdots-$ (1)
Substitute I, m, n in (1) we get $2\left(\frac{x-1}{r}\right)^{2}+3\left(\frac{y-2}{r}\right)^{2}-4\left(\frac{z-3}{r}\right)^{2}=0$ i.e $2(x-1)^{2}+3(y-2)^{2}-4(z-3)^{2}=0$.
i.e $2 x^{2}+3 y^{2}-4 z^{2}-4 x-12 y+24 z-22=0$ which is required eqn. of cone.

Find eqn. to the cone with vertex at $(0,0,0)$ which passes through the curve of intersection of plane $1 x+m y+n z=p$ and $a x^{2}+b y^{2}+c z^{2}=1$.
Soln.: Guiding curve is intersection of $\mid x+m y+n z=p \cdots-(1)$ and $a x^{2}+b y^{2}+c z^{2}=1, \cdots$ (2)
Homogenizing (1) and (2) we get, $\quad \mid x+m y+n z=p t \quad-$
(3) ($b^{\prime} c z$ this eqn. of degree 1) $a x^{2}+b y^{2}+c z^{2}=t^{2} \cdots$ (4) ($b^{\prime} c z$ this eqn. of degree 2) Substitute $t=\frac{l x+m y+n z}{p}$ from (3) in (4) we get ax ${ }^{2}+$ $\mathrm{by}^{2}+\mathrm{cz}^{2}=\left(\frac{l x+m y+n z}{p}\right)^{2}$ i.e $\mathrm{p}^{2}\left(\mathrm{ax}^{2}+\mathrm{by}^{2}+\mathrm{cz}^{2}\right)=(l x+m y+n z)^{2}$, which is req. eqn. of cone

Theorem: General equation of the cone with vertex at origin is homogenous of second degree of the type $a x^{2}+b y^{2}+c z^{2}+$ $2 h x y+2 g z x+2 f y z=0$. D. R's must satisfy eqn. of cone.

Proof: Given generator is If $\frac{x}{l}=\frac{y}{m}=\frac{z}{n}=\mathrm{r}$
\therefore any point on the generator is ($\mathrm{Ir}, \mathrm{mr}, \mathrm{nr}$), which lies on the cone
$a x^{2}+b y^{2}+c z^{2}+2 h x y+2 g z x+2 f y z=0-(1) \Rightarrow$ This point $(I r, m r, n r)$ must satisfy (1) $\quad \therefore$ we havea $(I r)^{2}+b(m r)^{2}+c(n r)^{2}+$ $2 h(m r)(n r)+2 g(n r)(m r)+2 f(m r)(I r)=0 \quad$ i.e $r^{2}\left(a(I)^{2}+b(m)^{2}+\right.$ $\left.c(n)^{2}+2 h l m+2 g \ln +2 f m n\right)=0 \quad$ Butr $^{2} \neq 0, \therefore a l^{2}+b m^{2}+c^{2}+$ $2 h l m+2 g l n+2 f m n=0$ i.e D.R's satisfy the eqn. of cone Cor.2: General equation of the cone with vertex at origin and passing through coordinate axis is $h x y+g z x+f y z=0$.

Another Proof: Let General equation of the cone with vertex at origin be $a x^{2}+b y^{2}+c z^{2}+2 h x y+2 g z x+2 f y z=0$. - (1) If (1) passes through coordinate axis (they areas generators) then D.R.'s of x-axis, y-axis and z-axis must satisfy eqn. (1) by cor.(1)
But D.R's of x-axis are $1,0,0$, they satisfy eqn. (1) $=>a(1)^{1}+0+0+$ $0+0+0=0, \Rightarrow a=0$
Similarly D.R's of y-axis are $0,1,0$ and z-axis $0,0,1$ must satisfy (1) $\Rightarrow b=0$ and $c=0$
\therefore eqn. (1) becomes $0+0+0+2 h x y+2 g z x+2 f y z=0$.
i. $e h x y+g z x+f y z=0$

Thus equation of the cone with vertex at origin and passing through coordinate axis
$h x y+g z x+f y z=0$.

Prove that the line $\frac{x}{l}=\frac{y}{m}=\frac{z}{n}$, where $l^{2}+2 m^{2}-3 n^{2}=0$ is a generator for the cone $x^{2}+2 y^{2}-3 z^{2}=0$
Proof: We know that if $\frac{x}{l}=\frac{y}{m}=\frac{z}{n}$ is a generator for the cone $\mathrm{x}^{2}+$ $2 y^{2}-3 z^{2}=0$ then by cor. (1),
D. $R^{\prime} s l, m, n$ of the generator must satisfy the eqn of cone.
\therefore we have $\mathrm{l}^{2}+2 \mathrm{~m}^{2}-3 \mathrm{n}^{2}=0$ which is true.

Find eqn. of cone generated by the line through ($1,2,3$) whose D.C.'s satisfy the eqn. $21^{2}+3 m^{2}-4 n^{2}=0$
Soln.: Eqn of generator passing through the point $(1,2,3)$ with D.C's I, m, n is

$$
\frac{x-1}{l}=\frac{y-2}{m}=\frac{z-3}{n}=\mathbf{r} \text { (say) }
$$

$\Rightarrow \mathrm{I}=\frac{x-1}{r}, \mathrm{~m}=\frac{y-2}{r}, \mathrm{n}=\frac{z-3}{r}$
By cor. (1) we know that D. C's of generator satisfy the eqn. of cone and that eqn. is given by $\left.2\right|^{2}+3 m^{2}-4 n^{2}=0 \cdots-$ (1)
Substitute I, m, n in (1) we get $2\left(\frac{x-1}{r}\right)^{2}+3\left(\frac{y-2}{r}\right)^{2}-4\left(\frac{z-3}{r}\right)^{2}=0$ i.e $2(x-1)^{2}+3(y-2)^{2}-4(z-3)^{2}=0$.
i.e $2 x^{2}+3 y^{2}-4 z^{2}-4 x-12 y+24 z-22=0$ which is required eqn. of cone.

Find eqn. to the cone with vertex at $(0,0,0)$ which passes through the curve of intersection of plane $1 x+m y+n z=p$
and $a x^{2}+b y^{2}+c z^{2}=1$.
Soln.: Guiding curve is intersection of $\mid x+m y+n z=p \cdots-(1)$ and $a x^{2}+b y^{2}+c z^{2}=1, \cdots$ (2)
Homogenizing (1) and (2) we get, $\quad \mid x+m y+n z=p t \quad-$
(3) ($b^{\prime} c z$ this eqn. of degree 1) $a x^{2}+b y^{2}+c z^{2}=t^{2} \cdots$ (4) ($b^{\prime} c z$ this eqn. of degree 2) Substitute $t=\frac{l x+m y+n z}{p}$ from (3) in (4) we get ax ${ }^{2}+$ $\mathrm{by}^{2}+\mathrm{cz}^{2}=\left(\frac{l x+m y+n z}{p}\right)^{2}$ i.e $\mathrm{p}^{2}\left(\mathrm{ax}^{2}+\mathrm{by}^{2}+\mathrm{cz}^{2}\right)=(l x+m y+n z)^{2}$, which is req. eqn. of cone

Prove that eqn. $2 x^{2}-8 x y-4 y z-4 x-2 y+6 z+35=0$ represents cone \& find its vertex.
Soln.: Given eqn. be $f(x, y, z)=2 x^{2}-8 x y-4 y z-4 x-2 y+6 z+$ $35=0 . .$. (1)
Make it homogeneous of second degree by introducing t
i.e. $F(x, y, z, t)=2 x^{2}-8 x y-4 y z-4 x t-2 y t+6 z t+35 t^{2}=0 \cdots-$
(2)

Differentiate (2) partially w.r.t x, y, z, and t ,
Next, $\frac{\partial F}{\partial y}=0 \Rightarrow-8 \mathrm{x}-4 \mathrm{z}-2 \mathrm{t}=0$, i.e
$\frac{\partial F}{\partial z}=0 \Rightarrow-4 y+6=0, \Rightarrow y=\frac{3}{2}$
$8 x+4 z+2=0 \cdots-(4)$ by sub. $t=1$
$\frac{\partial F}{\partial t}=0 \Rightarrow-4 \mathrm{x}-2 \mathrm{y}+6 \mathrm{z}+70 \mathrm{t}=0$ i.e
$-4 x-2 y+6 z+70=0 \ldots-(6), t=1$

Put $y=\frac{3}{2}$ in (3) we get $4 x-8\left(\frac{3}{2}\right)-4=0, \Rightarrow x=4$
Put $x=4$ in (5) we get, $32+4 z+2=0 \Rightarrow 4 z=-34 \quad \therefore z=-\frac{17}{2}$
Put $x=4, y=\frac{3}{2}$ and $z=\frac{-17}{2}$ in (6) we get
$-16-2\left(\frac{3}{2}\right)+6\left(-\frac{17}{2}\right)+70=-16-3-51+70=-70+70=0 \therefore$
(6) is satisfied by $\left(4, \frac{3}{2},-\frac{17}{2}\right)$
\Rightarrow Eqn. (1) represents cone with $\left(4, \frac{3}{2},-\frac{17}{2}\right)$ as vertex.

Find the eqn. of the right circular cone with vertex $(0,0,0)$, eqn. of the axis as $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ and semi vertical angle θ is 60°.
Soln: Let $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ be any point on the surface of the cone.
Squaring both the sides we get ,
D.R's of axis are $1,2,3$ and $\theta=60^{\circ} \therefore \cos 60=\frac{x 1+y 2+z 3}{\sqrt{x^{2}+y^{2}+z^{2}} \sqrt{1+2^{2}+3^{2}}}$
i.e $\frac{1}{2}=\frac{x+2 y+3 z}{\sqrt{x^{2}+y^{2}+z^{2}} \sqrt{14}}$
$14\left(x^{2}+y^{2}+z^{2}\right)=4(x+2 y+3 z)^{2}$
i.e $7\left(x^{2}+y^{2}+z^{2}\right)=2(x+2 y+3 z)^{2}$, on simplifying we get,
$5 x^{2}-y^{2}-11 z^{2}-8 x y-24 y z-12 z x=0$, which is req. eqn. of rt. circular cone

Find eqn. of cone generated by the line through ($1,2,3$) whose D.C.'s satisfy the eqn. $21^{2}+3 m^{2}-4 n^{2}=0$
Soln.: Eqn of generator passing through the point $(1,2,3)$ with D.C's I, m, n is

$$
\begin{gathered}
\frac{x-1}{l}=\frac{y-2}{m}=\frac{z-3}{n}=\mathbf{r} \text { (say) } \\
\Rightarrow \mathrm{I}=\frac{x-1}{r}, \mathrm{~m}=\frac{y-2}{r}, \mathrm{n}=\frac{z-3}{r}
\end{gathered}
$$

By cor. (1) we know that D. C's of generator satisfy the eqn. of cone and that eqn. is given by $\left.2\right|^{2}+3 m^{2}-4 n^{2}=0 \cdots-$ (1)
Substitute I, m, n in (1) we get $2\left(\frac{x-1}{r}\right)^{2}+3\left(\frac{y-2}{r}\right)^{2}-4\left(\frac{z-3}{r}\right)^{2}=0$ i.e $2(x-1)^{2}+3(y-2)^{2}-4(z-3)^{2}=0$.
i.e $2 x^{2}+3 y^{2}-4 z^{2}-4 x-12 y+24 z-22=0$ which is required eqn. of cone.

Find the eqn. of the right circular cone with vertex $(0,0,0)$, eqn. of the axis as $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ and semi vertical angle θ is 60°. Soln: Let $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ be any point on the surface of the cone. Squaring both the sides we get ,
D.R's of axis are $1,2,3$ and $\theta=60^{\circ} \therefore \cos 60=\frac{x 1+y 2+z 3}{\sqrt{x^{2}+y^{2}+z^{2}} \sqrt{1+2^{2}+3^{2}}}$
i. $\frac{1}{2}=\frac{x+2 y+3 z}{\sqrt{x^{2}+y^{2}+z^{2}} \sqrt{14}}$
$14\left(x^{2}+y^{2}+z^{2}\right)=4(x+2 y+3 z)^{2}$
i.e $7\left(x^{2}+y^{2}+z^{2}\right)=2(x+2 y+3 z)^{2}$, on simplifying we get, $5 x^{2}-y^{2}-11 z^{2}-8 x y-24 y z-12 z x=0$, which is req. eqn. of rt. circular cone

