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Graphs: Definition

G=(V,E)

L Edges (arcs)

Vertices (nodes)

Edges are a subset of V x V

L, {(vwW):vandV arein V}

We also write v—> V' instead of (v.Vv')



Simple graph

vl

V2

v3


















Directed Graphs (continued)

Definition: The in-degree of a vertex v,
denoted deg—(v), is the number of edges which
terminate at v. The out-degree of v, denoted
deg+(v), is the number of edges with v as their
initial vertex. Note that a loop at a vertex
contributes 1 to both the in-degree and the
out-degree of the vertex.

Example: Inthe graph G we have

deg—(a) = 2, deg—(b) = 2, deg—(c) = 3, deg—(d) =
2,

deg—(e) = 3, deg—(f) = 0.

deg+(a) = 4, deg+(b) =1, deg+(c) = 2, deg+(d) =
2, deg+ (e) = 3, deg+(f) = 0.



* Directed Graphs (continued)

* Theorem 3: | a directed G =(V, E) with IEl
edges, sum of the in-degrees = sum of the

out-degrees= IEl. In other words
ST d(v) =>_dT(v,) =|E|

Vi S\V4 Vi S\V4

Proof —Since > d(v;) =2|E]

Vi S\V4

— ST dv,)=>d (v, )+> dr(v,) =2

V; eV V; eV Vv, eV

= [E|=2 > dv) =5 > d (v)+Z > d (V)

V; eV V; eV V; eV

= |E| = Zd Vi) :Zd Vi)

Vi =V Vi =V

or
S d v =3 d ) =|E

Vi =V Vi =V



Isomorphism of a graph

Definition 5.1.4 Suppose

G,=(V,E)and G,=(W,F). G1->G1 and G2->G2 are isomo
rphic if there is a one-to-one f:V->W and such
that {v1,v2}€E if and only if {f(v,),f(v,)}€F In addition,

the repetition numbers

of {v1,v2H{v1,v2} and {f(v1),f(v2)Hf(v1),f(v2)} are th
same if multiple edges or loops are allowed. This
bijection of f is called an isomorphism. When G1 -
G1 and G2 - G2 are isomorphic, we write G1=G2.

Each pair of graphs in figure are isomorphic. For

a
example, to show explicitly that G1=G3, an
isomorphism is A
f(v1)f(v2)f(v3)f(v4)=w3=wi4=w2=w1. |
C

Clearly, if two graphs are isomorphic, their degree
sequences are the same.









Subgraphs

Given a graph G = (V, E) and agraph G’ = (V’, E’), G is a subgraph
of G’ if:

vV
sEcF

| , Every elementin the left set is an element in the
right set





































Bipartite graphs coloring

Suppose there are two colors: blue and red. Color the first
vertex blue. For each newly-discovered node, color it the
opposite of the parent (i.e. red if parent is blue). If the child
node has already been discovered, check if the colors are the
same as the parent. If so, then the graph isn't bipartite. If the
traversal completes without any conflicting colors, then the
graph is bipartite.
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Weighted Graphs

* Inaweighted graph, each edge has an associated numerical value,
called the weight of the edge

* Edge weights may represent, distances, costs, etc.

* Example:

* Ina flight route graph, the weight of an edge represents the distance in
miles between the endpoint airports

Shortest Fath:



Weighted graphs

Example Consider the following graph, where nodes represent cities, and
edges show if there is a direct flight between each pair of cities.

CHG

HTD

12

SD

V = {SF, OAK, CHG, HTD, ATL, LA, SD}
E = {{SF, HTD}, {SF, CHG}, {SF, LA}, {SF, SD}, {SD, OAK}, {CHG, LA},
{LA, OAK}, {LA, ATL}, {LA, SD}, {ATL, HTD}, {SD, ATL}



Problem formulation: find the "best" path between two vertices v,, v,e V

in graph G = (V, E). Depending on what the "best" path means, we have 2
types of problems:

S The minimum spanning tree problem, where the "best" path means
the "lowest-cost" path.

S The shortest path problem, where the "best" path means the "shortest"
path.

Note that here edge weights are not necessarily Euclidean distances. Example:
2 _ 800
612 200

410 310 s 2985 > 1421 + 310, not the case

29385 here, however.
St A 400

1421




® § 4.9. WALK AND PATH G e

Walk >
Deﬁnitign. Lf;t G = (V, E)be a graph. Then by a walk we shall mean a finite

sequence of edges of the form
) (v, vy), (vy, vy), (v, vg), (vg, Ug)yeoos (Up = 15 Up )}
The length of a walk is the number of edges it contains.
Open and Closed Walks

Definition. The walk (*) is closed if Vg = U, ; otherwise it is open.
A simple walk is a walk in which no edge appears more than once.

Example 1.
a 2 b a 2 b
| 3 4 | 4
d 5 c d 5 c
(a) (b)
Fig. 26

In the graph shown in Fig. 26 (a) and (b), walks 1, 2, 5,1,3and 1, both
open walks from d to ¢, but on y the graph 26 d)) is Bimple.4’ %4

Path |
Definition. Anopen walk in which no vertex appears more than is called
a path (or a simple path or an elementary path). Be R

Example 2. In Fig. 26 (a), the walk d1 a2 b4c 5d1 a3c is not a path whereas
the walk dla 2b4c is path.



14.17. Connected and Disconnected Graphs

A graph is said to be connected, if there is at least one path betwe
every pair of vertices in G (or we can move from a vertex to anoth
vertex along edges). Otherwise G is disconnected.

Example :

Vq
V,
e, 6 A
b € V3
g | €3
(Connected graph) Vs, Ve



Components or Maximal Connected subgraph

A subgraph Sof graph G is said to be a component or Maximal

Connected subgraph of G if the following holds

1. xeV(s) = V(s) ={Y € G :xand yare connected in G}.

2. S=<V(s)>.

In other word s each of the connected part of the disconnect ed graph is called components .
Example -

Connected graph Components



€ = BAMAARASI A Sew — g

where
Theorem 2. The number of vertices of odd degree in a graph is
always even.
Proof : Let G=G (V, E)be a graph such that
v,} and E = {e,, €3, ---» e,.}

V= {v,, V3, V3s --o»
by handshaking theorem.

with n vertices and m edges and we know that

n
M dv;) =2e=2m. (D
i=1
We can write the above equation such as
n n n
> dwv) = S, dv) + >, dwo)
i=1 i=even i=odd
n n n
S dep = 2 d— 2 400
i=odd i=1 i=even
[from (1)]

= 2m — Even degree.
— Even degree — Even degree.
en when m is an odd or even.
= Even degree.
mber is always even]

f odd degree in a graph is always
Proved.

es in a

Where 2m is always ev

[The subtraction of two even nu
Hence the number of vertices O

even.
Theorem 3. Show that the maximum number of edg
ith n vertices is !‘_(_"7__2 Y

simple graph W
a simple graph (neither parallel edges

Proof : Let G = G (V, E) be

nor self loop) such that



S44 | RP Unified Real Analysis, inear Algebra & Discrete ATcrtts e
tatics

Vo= “'l. V2. —wew ""’ nn(’ E~= (‘-lo c’z. conn em)
with r-vertices and ¢ cdges and we know that by hundshaking theorem

> dcv,) = 2e

il
— d(vy) 4 d(vy) + ... +d(v,) =2¢

and we also know that the maximnmum degree of any vertex
graph with 77 vertex is

- (1)
= 53 — 1

Then from eqquation (1), we get

Cr2 — 1) 4+ (2 — 1) 4+ ... + 2 timmes = 2¢
e r2-Crz — 1) = ¢
nnCrz — 1)
- o Hence Proved.

Theorem 4. Prove that a simple graph withh a mz-vertices must
Crz — 1)Crz — 2)
= -

Proof : Consider a simple graph on 722 vertices. Choose 7z — 1 vertices
Crz — 1)Crz — 2)
2
only can be drawn between these vertices. Thus, if we have more than
Crz — 1)Crz — 2)
2

vertices v, to some vertex v,, 1 = i = 2 — 1 of . Hence G must be
connected.

Theorem S. A simple graph with nz-vertices and A-components
can have at most U2 — k) —k + 1) edges. =
=2

FProof : Let G = (V, £) be a simple graph with n-vertices and k
Components, cach of the components has 2y, 715, oo, 2, as number of ver -
S0 that Py i, A ... + rn, = n

il i”‘ - -:‘o'«(l*i |

=1

be connected if it has more thhan

Vie Voo ceea v, Of G. We have more than

number of edges

cdges atleast one edge should be drawn between the nath




wWe knosw tihaaat S P

A
« —13 ("‘ = A | S s l=-k

fomy
Sguarine both sides

LS —
5 Gy == n]

P ) = (ra — k)z

A =2
.8 = oy — 1)]

=1 = 22 - k2 — Dk,

i
M,

Il

0
M»

-
I

i L sumamation

X %
- > rny + S 1 — 2 > n,=n2 4+ k2 — 2nk

SErapias | 545

and from eqn. (1)

Crz; — 1D2 + 2 (some POsitive term) = 22 4 42 — Sk

By the
(52 +1—250,) Sn2+ k2 —2nk ¥ propextyof]

i1 £==1 F=1
A L
= S v k—2n= 27 + k2 — 2nk [from egn. (1))
7%

S
S| =2 - k2 —2nk —k + 2n.
£

ey

We know that the maximurrm number of edges in the APt component

of G which is a simple graph is -% rz; Crz;, — 1).

Thus, total numbe of edgces

A
= 'i‘ IE; r:; (”l— 1D

A = -
= i znt - %y
= F=3
X ln2+k2_2nk—k+2n-n1
=

[from egns. (2) and C1)H})

=1 [(0-kP+ (- )

(n—k)
2

(n-k+1).

Proved,

[N P —



Applications of Graphs

* Since they are powerful abstractions, graphs
can be very important in modeling data. In
fact,many problems can be reduced to known
graph problems. Here we outline just some of
the many applications of graphs.1.Social
network graphs: to tweet or not to tweet.
Graphs that represent who knows whom, who
communicates with whom, who influences
whom or other relationships in



* Social structures. An example is the twitter
graph of who follows whom. These can be
used to determine how information flows,
how topics become hot, how communities
develop, or even who might be a good match
for who, or is that whom.



The Konigsberg bridge problem

The town of Konigsberg, Prussia (now a city in Russia called Kaliningrad)
is built on the both banks of the river Preger as well as on an island in the
river. At one time there were seven bridges linking one bank to the other
as well as both banks to the island. The people in the town wondered if
were possible to start at some point in the town, walk about the town
crossing each bridge exactly once, and end up back at the starting point.

MAT230 {Discrete Math)




The Konigsberg bridge problem

e A, B, C, and D label regions of land (A and D are islands).
@ Bridges are labeled with a, b, c, etc.

@ Try to find a route, starting anywhere you want, that crosses every
bridge once and end up back where you started.

MAT230 {Discrete Math) Graph Theory




The Konigsberg bridge problem

e A, B, C, and D label regions of land (A and D are islands).

@ Bridges are labeled with a, b, c, etc.

@ Try to find a route, starting anywhere you want, that crosses every
bridge once and end up back where you started.

MAT230 {Discrete Math) Graph Theory




Konigsberg bridge graph
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@ Consider starting at A then visiting B, D, and C, before returning to
A. This does not use each edge, but does visit each vertex.

@ We could show this with the walk AaBfDgCcA.



Konigsberg bridge graph
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@ Notice what we've established: if there i1s a vertex with an odd
number of edges attached to it, we will be prevented from finding a
route that uses all edges once and returns to the starting point.

@ If every vertex has an even number of edges attached to it, then there
Is always an entry-exit pair so we can find a route.












» Graph Coloring Is an assignment of colors (or
any distinct marks) to the vertices of a graph.
Strictly speaking, a coloring Is a proper
coloring If no two adjacent vertices have the
same color.




» Definition: A graph is planar if it can be drawn
In a plane without edge-crossings.

\

» The four color theorem: For every planar
graph, the chromatic number is <4,




Vertex Coloring

* Avertex coloring is an assignment of labels or
colors to each vertex of a graph such that no
edge connects two identically colored vertices




Edge Coloring

« Similar to vertex coloring, except edges are
color.

» Adjacent edges have different colors.




Applications of Graph Coloring

* Many problems can be formulated as a graph
coloring problem including Time Tabling,
Scheduling, Register Allocation, Channel
Assignment.

* A lot of research has been done In this area so
much Is already known about the problem

space.






Explanation

* The standard approach to coloring a map is to
use a single color for a state and never use the
same color for two states.

* Two states whose common border is just one
point can be colored, If we so choose, with the
same color.



Travelling Salesperson Problem

Travelling salesman route will be plan in such a way that in a
given N number of cities cost of travelling from one city to any
other city what 1s the minimum round trip route that visit each
city once and then return to the starting place. The goal 15 to find
the shortest tour that visit each city in a given cities exactly ones
and then return to the starting city. The only solution to the
travelling salesman problem is to calculate and compare the
length of all possible ordered combinations.



e Suppose a salesman wants to visit a certain
number of cities allotted to him. He knows the
distance of the journey between every pair of
cities. His problem is to select a route the
starts from his home city, passes through each
city exactly once and return to his home city
the shortest possible distance. If we represent
the cities



* by vertices and road connecting two cities
edges we get a weighted graph where, with
every edge e, a number w;(weight) is
associated.

* A physical interpretation of the above abstract
is: consider a graph G as a map of n cities
where w (i, j) is the distance between cities |
and j. A salesman wants to have the tour of
the cities which starts and ends at the same
city includes visiting each of the remaining a
cities once and only once.












g on a graph, by covering
i*m.nal vertex, such a-




Definitions

* An Euler path is a path that passes through
each edge of a graph exactly one time.

* An Euler circuit is a circuit that passes through
each edge of a graph exactly one time.

* The difference between an Euler path and an
Euler circuit is that an Euler circuit must start
and end at the same vertex.



Examples

A
Euler path Euler circuit
A
B C
B
D
D E
(a) .
An Euler path ®
An Euler circuit
Da E&Ba C&Aa Ba Da CaE D, E,B,C,A,B,D,C,E,F,D







Hamilton Paths and Hamilton Circuits

* A Hamilton path is a path that contains each
vertex of a graph exactly once.

* A Hamilton circuit is a path that begins and
ends at the same vertex and passes through
all other vertices of the graph exactly one
time.



* Graph (a) shown has A
Hamilton path A, B, C, E, D.

C
The graph also has
Hamilton path C, B, A, D, E. D
Can you find some others? (a)
A B
®

* Graph (b) shown has
Hamilton path A, B, C, F, H, £

E, G, D. The graph also has
Hamilton path G, D, E, H, F
C, B, A. Can you find some

others?
(b)



Example: Hamilton Circuit

Graph (a) shown has
Hamilton circuit B C
A B D G E H,FC,A.

D F
A Hamilton circuit starts and
ends at the same vertex. G o H
a
Graph (b) shown has A .
Hamilton circuit c

A, B C E D,A.
Can you find another

(b)



Number of Unique Hamiltor
Circuits in a Complete Grapkh

* The number of unigue Hamilton circuits in a
complete graph with n vertices is
(n — 1)! where

(n—1)'=(n—1)(n—-2)(n—-3)..(3)(2)(1)



Example: Number of Hamilton
Circuits

How many unique Hamilton circuits are there
in a complete graph with the following
number of vertices?

a) 4 b) 9

a)4=(4—1)1=[lk3e201 =0
b) 9= (9— 1)1 = 8e7e6e504030201
= 40,320









Dijkstra Prcedure for Shortest path

e Dijkstra’s algorithm is unique for many reasons,
which we’ll soon see as we start to understand how
it works. But the one that has always come as a slight
surprise is the fact that this algorithm isn’t just used
to find the shortest path between two specific nodes
in a graph data structure. Dijkstra’s algorithm can be
used to determine the shortest path from one node
in a graph to every other node within the same graph
data structure, provided that the nodes are
reachable from the starting node.
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(c) = min (8, 5 + o) = &
Ke) = min (11, 5 + 12) -

(> = min (==, 5 + 10) = 15

13-« oM

Step IIL. Taking F3={a.®b, dy, Ta ={c, e [, =}

I(z) = min (=, B + o°) = ¢ >..

Thus ¢ € T3 has the minimum index 8.

Step IV. Taking P4={a,b.d.c}, T4 ={e

e)=min (11, 8 + 4) =

() = min (15, 8 + ==)

I(z) = min (eo, 8 + 8) =
Thus e € 74 has the minimum index 11.
Step V. Taking Pg =1{a, b,d, ¢, e}, T ~

I = min (15,11 + 7) =

A=) = min (16, 11 +
Thus f € 75 has the minimum index
Step VI. Taking Pg={a, b, d, c, e,
(=z) = min (16, 15
Hence the length of the shortest pa

rat—~
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